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1 Abstract

A passive BCI [ZK11] extracts its outputs from arbitrary brain signal activity
occurring in the absence of the objective of voluntary control, for enhancing a
human-computer interaction with definite details on the true user state. Over
the last decade, passive brain—computer interface (BCI) schemes and bio-signal
acquisition technologies have experienced a significant growth that has allowed
the real-time analysis of bio-signals, with the objective to quantify pertinent
insights, such as cognitive states of the users. However, surpassing reliable
proof-of-concepts, employing passive BCIs in day-to-day life requires us to deal
with numerous challenges. One such challenge is the within-session variability
influencing brain signals such as ElectroEncephaloGraphy (EEG).

However, a significant portion of passive BCI studies were conducted on a
single day (also known as session), rendering it unclear if the designed BCI would
still function on multiple days/sessions without re-calibration. Since, the EEG
signals of every subject and the corresponding label vary with each subject,
inter-subject classification using sessions of all the subjects in culmination, with
a generalized ensemble of models, has been avoided. In this research, we focus
on mental workload classification for a given subject (intra-subject estimation)
using the EEG data from another session (inter-session adaptation).

Transfer Learning [WXL20] and Riemannian Geometry [BBCJ13] based
methods are state of the art approaches in use, for EEG classification. In this
work, we employ Riemannian Geometry based methods.
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2 Feature Extraction

Firstly, a 5" order Butterworth Filter was used to filter raw data within the
alpha (8 - 13 Hz) and theta (4 - 7 Hz) frequency bands.

We followed two schemes for electrode selection to decrease the time and
space complexity of models without a major loss in data variability. First
method involved slicing data for 9 selected electrodes located in the frontal
and parietal regions of the brain [GWR'14]. In the second method, we em-
ployed Riemannian distance based electrode selection [BB11] which is a subject
specific channel selection method. In this approach, pairwise Riemannian dis-
tance for every k'" class (k = 0,1,2) is calculated between covariance matrices.
The Riemannian distance between two covariance matrices C; and Cs is given
by:

8:(C1,Cs) = |[Log(Cy*Ca|l (1)

where Log(.) is the log-matrix operator and ||.||r is the Frobenius norm of a
matrix. A subset of channels are selected and each channel is pruned sequentially
to maximize the average Riemannian distance calculated between all pairwise
class-conditional matrices as shown in the following criterion (??). Here dg
denotes the pair-wise Riemannian Distance and K (=3) is number of classes

K-1

K
> (0r(Cr, Cy)) (2)

k=0 j>k

With validation accuracy for the fine-tuned models as the selection metric,
subject-specific channel number was evaluated which addressed data diversity
among different subjects. The number of channels for each subject was reduced
from 61 to a range of 18-32 channels.

Further, Riemannian Geometry methods were used on the covariance matri-
ces for feature extraction. The covariance matrix C, corresponding to each trial
X € R"*"s where n. is the number of channels and n; is the number of tem-
poral samples, is calculated using the Ledoit-Wolf covariance estimator [LW04]
as below:

trace(A)

Ne

C=1-a)A+a I (3)

where o € [0,1] is the shrinkage factor estimated using Ledoit and Wolf
function, I is n. X n. Identity Matrix and A is the simple covariance matrix
calculated as:

xXxT
A= trace(X XT) )

The space of covariance matrices is a differentiable Riemannian manifold M.
The derivatives at a matrix C' on the manifold lies in a vector space Tp, which
is the tangent space at that point. Tangent Space is efficient for classification
algorithms like SVM, LDA, Neural Networks which are based on projections



into hyperplanes. Each covariance matrix C; can be mapped into the tangent
space located at the geometric mean of the whole set of trials.
-1 -1
s; = upper(Cy? Loge(C;)Cp? ) (5)
where Cy = 0(C;,i = 1...K) and 0 is the Riemannian Mean of covariance
matrices calculated as:

I
0(Cy,...Cx) = arg min 52(CCy) (6)
PeP(n) P
Therefore, we calculated tangent space features as the linearization of the man-
ifold of Riemann covariance matrix as described above. The final train and test
data is shuffled before passing into the classification models.

3 Classification Results (Model Selection elab-
orated)

For final classification, Minimum Distance to Mean (MDM), Fisher Geodesic
Minimum Distance to Mean (FGMDM) and Deep Neural Network (DNN) clas-
sification methods take the covariance features C calculated in (3). Whereas
tangent space features calculated in (5), are used as input to the Support Vector
Machine (SVM), and Linear Discriminant Analysis (LDA) classification meth-
ods (see fig. 1).

The SVM model was implemented with radial basis function kernel and
subject-specific regularisation parameter(R). Specific regularisation parameter
were obtained by fine-tunning the model for each subject separately to a range
of 0.1-10.

The MDM and FgMDM models classify by the shortest Riemannian distance
between the test covariance matrix and intra-class covariance matrix means. Fg-
MDM uses geodesic filtering in addition. We employed the Reimannian metric
for both the models.

The 5-layer DNN model is a fully connected sequential classification model
with Adagrad optimizer, categorical crossentropy loss function and a learning
rate of 0.00045, which is iterated for 200 epochs. (512, relu), (256, tanh), (128,
tanh), (64, tanh) and (3, softmaz) are the corresponding layers.

The LDA model was used for classification by reducing the dimensionality of
input by projecting it to the most discriminative directions using the Singular
Value Decomposition solver.

We have also implemented EEGNet model [LSW*18] which takes X as the
input. X is the filtered data followed by electrode selection. EEGNet is a 5-layer
sequential 2D CNN model with an Adam optimizer and categorical crossentropy
as the loss function. The model with a learning and dropout rate of 0.0001
and 0.0025 respectively, and relu activation for 4 layers followed by softmax
activation for the final layer is iterated for 30 epochs. The accuracies achieved



can be further improved to achieve comparable results with SVM by applying
transfer learning on the model which is a future prospect.
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Figure 1: Mental Workload prediction Machine learning pipeline

Finally, subject-wise model selection is followed by test labels prediction.
The second method shown in table 2 uses modified models and preprocessing
which involves channel selection explained in (2) and selective fine- tuning of
hyperparameters of SVM, DNN and FgMDM. Since problem is an inter-session
adaptation based classification, validation accuracy for each model and subject
as shown in table 1 is reported for 2nd session data labels. The SVM classifier
with Riemannian channel selection and Riemannian geometry-based covariance
matrices performed superior in all subjects except for subject 13 where the
DNN classifier performed superior. The average prediction accuracy for all
the 15 subjects estimated on the 3rd session came out to be 0.5426, which is
a considerable performance in case of inter-session classification methods with
limited amount of training data.

In future, we will look at adaptive Riemannian methods for inter-session
adaptation and transfer learning methods for the EEGNet model to counter the
loss in performance caused by drifts occurring in data across sessions.

Table 1: Inter-session Adaptive Classification Validation Accuracy
(*refer to above paragraph below Figure 1)




Subject Method-1 | Method-1 | Modification| Method-2 | Method-2
(along rows) Filtered Unfiltered Parame- Filtered Unfiltered
and Methods Data Data ters Data after | Data after

(along without without (Method- modifica- modifica-
columns) channel channel 2)* (No. of tion tion
selection selection Channels
& C value
for SVM)
P01-SVM 0.530201 0.579418 24, 0.1 0.583893 0.60179
P01-LDA 0.304251 0.337808
P01-FGMDM 0.369128 0.378076
P01-MDM 0.478747 0.447427
P02-SVM 0.541387 0.612975 28,1 0.559284 0.626398
P02-LDA 0.496644 0.536913
P02-FGMDM 0.46085 0.427293
P02-MDM 0.46085 0.425056
P03-SVM 0.630872 0.646532 28, 6 0.637584 0.653244
P03-LDA 0.380313 0.436242
P03-FGMDM 0.333333 0.344519
P03-MDM 0.58613 0.545861
P04-SVM 0.559284 0.630872 32,4 0.505593 0.657718
P04-LDA 0.431767 0.395973
P04-FGMDM 0.38255 0.33557
P04-MDM 0.456376 0.427293
P05-SVM 0.532438 0.503356 32, 2 0.53915 0.545861
P05-LDA 0.355705 0.456376
P05-FGMDM 0.375839 0.427293
P05-MDM 0.47651 0.440716
P06-SVM 0.702461 0.646532 32,2 0.727069 0.684564
P06-LDA 0.41387 0.346756
P06-FGMDM 0.47651 0.510067
P06-MDM 0.456376 0.454139
PO7-SVM 0.530201 0.563758 28, 0.1 0.604027 0.624161
PO7-LDA 0.387025 0.400447
PO7-FGMDM 0.333333 0.46085
P0O7-MDM 0.49217 0.503356




P08-SVM 0.489933 0.619687 28, 4 0.501119 0.646532
P0O8-LDA 0.38255 0.420582

P08-FGMDM 0.371365 0.543624
P08-MDM 0.454139 0.395973
P09-SVM 0.514541 0.512304 28,6 0.559284 0.53915
P09-LDA 0.41387 0.487696

P09-FGMDM 0.315436 0.342282
P09-MDM 0.512304 0.503356
P10-SVM 0.626398 0.579418 28,2 0.63311 0.624161
P10-LDA 0.384787 0.407159

P10-FGMDM 0.33557 0.348993
P10-MDM 0.561521 0.46085
P11-SVM 0.559284 0.552573 28, 2 0.55481 0.588367
P11-LDA 0.454139 0.324385

P11-FGMDM 0.431767 0.440716
P11-MDM 0.469799 0.427293
P12-SVM 0.512304 0.494407 24,0.1 0.559284 0.521253
P12-LDA 0.420582 0.389262

P12-FGMDM 0.378076 0.362416
P12-MDM 0.516779 0.474273
P12-DNN 0.478901 0.499541

P12-EEGNet 0.458084 0.437365
P13-SVM 0.310962 0.416107 24,0.1 0.404922 0.4443
P13-LDA 0.391499 0.286353

P13-FGMDM 0.373602 0.310962
P13-MDM 0.39821 0.418345
P13-DNN 0.41 0.4443

P13-EEGNet 0.398 0.417
P14-SVM 0.519016 0.498881 18, 8 0.49217 0.543624
P14-LDA 0.465324 0.400447

P14-FGMDM 0.355705 0.387025
P14-MDM 0.451902 0.378076
P15-SVM 0.514541 0.545861 22,2 0.478747 0.565996
P15-LDA 0.364653 0.342282

P15-FGMDM 0.324385 0.33557




’ P15-MDM 0.422819 0.503356
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